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1. Introduction

Burgers' equation is a one-dimensional simple model for convection-diffusion phenomena

such as shock waves, supersonic flow about airfoils, traffic flows, acoustic transmission, etc.

For high Reynolds number, the solution of Burgers' equation produces steep gradients due

to the nonlinear nature of the convection.

In this paper, we consider a stabilization problem for Burgers' equation. We employ
"a-shifted" linear feedback control laws to obtain a desired degree of stability, on a certain

energy space, for the closed-loop nonlinear system.

Burgers' equation

( 1)0 0- 02
(1.1) z(t, x) + z(t, X)-Z(t, x ) = -Z(t, X)

a9t ax aX
2

was introduced by Burgers [5,6,7] as a simple model for turbulence, where c > 0 is a viscosity

coefficient. Since then, many researchers have considered the conservation law

(1.2) -z(t,x) + z(t,x) az(t,x) = 0

and the "viscosity solution"

(1.3) z(t, x) = lim z'(t, x),
CIO

where z'(t, x) satisfies equation (1.1), see [9,16,18,22,24,25,26].

Oleinik [26] proved that for any L0°-initial data, there is a unique viscosity solution for

equation (1.2) and the solution satisfies the "entropy condition"

(1.4) z(t,x +a) - z(t,x) E

a t

for all t > 0, a > 0, -oo < x < cc and for some constant E > 0. A complete discussion of

these results may be found in [32].

Almost no results exist for the control problem associated with Burgers' equation. Chen,

Wang and Weerakoon [8,35] considered an optimal control problem for equation (1.2) with

-oo < x < cc. The problem was to select an initial function to minimize a specific cost

functional J. They obtained sufficient conditions for the differentiability of J with respect to



the initial function and explicit expression of the entropy solution of (1.2) in terms of initial

data.

In this paper we consider a control problem for Burgers' equation (1.1) defined on a

finite interval. Specifically, we will find several feedback laws stabilizing the nonlinear system

(1.1) with a certain exponential decay rate. The feedback laws will be obtained from the

linearized equation. Curtain [11] has considered a stabilization problem for certain semilinear

evolution equations. Using Kielh6fer's stability results for semilinear evolution equations [20],

she showed that, under certain conditions, there exists a finite dimensional compensator

which produces a stable closed-loop system. These finite dimensional compensators are also

obtained from the linearized control system. Applying her results to Burgers' equation (1.1)

with, for example, Dirichlet boundary conditions, one can obtain the stabilizability results

of the closed-loop system which are similar to ours. However, in [11], there is a restriction on

the action of the output operators. The domain of the output operator was required to be

a certain subspace of L2 which contains the Sobolev space H0l. In this paper, we investigate

optimal feedback laws, instead of finite dimensional compensators, in the sense that they

minimize certain energy functionals.

Well-posedness and stability results for the open-loop system are obtained in Section 2.

In Section 3, a "shifted" linear control problem, (LQR), is introduced. Under appropriate

selection of input and output operators, (LQR), is stabilizable and detectable. The feedback

control law obtained from (LQR)O produces the desired degree of stability for the closed-

loop nonlinear system, (Theorem 3.10). In Section 4, a numerical scheme for computing the

"feedback functional gains" is developed and several numerical experiments are performed.

We shall use standard notation. If (X, I1 -ix) and (1, I1" 11y) are normed linear spaces,

then £(X, Y) will denote the space of all bounded linear operators from X to Y and for any

A E £(X, Y), IfAII or ffAffc(x,y) will denote the operator norm on the space £(X, Y). In

the event that X = Y we denote £(X, Y) by £(X). From time to time we will use II-If
without any subindex for vector or operator norm. In all such cases the appropriate index

for f1 - 11 will be understood from the context. For a Hilbert space X, we denote the inner

product on X x X by < .,. >X. Given a linear operator A from X into itself, we denote

its domain, spectrum, resolvent and adjoint by D)(A), a(A), p(A) and A*, respectively. For

real numbers a, b with a < b, LP(a,b; X), 1 < p < -n, will he the space of all Lebesgue
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measurable functions f from (a,b) to X such that If IILPC(,b) (ft if(x)jPd) < o. The

spaces Hk(a, b) and Hko(a, b) are the standard Sobolev spaces defined by Hk(a, b) = {f E

L2 (a,b)If 0) E L 2(a,b),j 0,1,.. ,k} and Iko(a,b) = {f E ifk(a,b)lf(j)(a) = f(j)(b)

0,j = 0,1,..- ,k- 1}, respectively. The dual space 1-(a,b) of Ho(a,b) is the space of all

continuous linear functionals on Ho(a, b) represented by the inner product < ,>L2(a.b.

Finally, we present a physical example that may be found in most standard references to

motivate the control problem for Burgers' equation. Other examples involving traffic flows,

supersonic flow about airfoils, acoustic transmission and turbulence in hydrodynamic flows

can be found in [12] and the references given there. The following example is taken almost

directly from [12].

Example (Shock Waves)

An impulsively-started piston moving at a constant velocity into a tube containing a

compressible fluid initially at rest creates compression waves. The compression waves even-

tually coalesce, due to the nonlinear nature of the convection, to form a single shock wave.

The one-dimensional unsteady motion of the fluid is governed by the continuity equation

(1.5) -9p(t,x) + p(t,x) v(t,x) + V(t0x) p(t,X) = 0

and the x-momentum equation

di 0 0 a2

(1.6) -v(t, x) + v(t, x) v(t, x) + ( p(t, x))/p(t, x) = -V(t, x),
at(x a Ox2

where p is the density, v is the velocity, p is the pressure and 6 is the "diffusivity of sound".

It is convenient to replace the density by the sound speed, a = a(t,x) by a('.x)/ao =

(p(t, x)/oo) 2 , where -y > 1 is the specific heats ratio and the subscript 0 refers to the

undisturbed values [231. Equations (1.5) and (1.6) become

(1.7) - a(t, x) + v(t,x) a(t, () - - , - (t,±X = 0
at Ox 2 0~tX)~vt

and

0 a 2 a 02
(1.8) jv(t, X) + v (t, X)-v(tx) + a(t,x)-a(t, x) - v(t, x),
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where 6 is a function of the undisturbed (to the right of the shock) viscosity, density, specific

heat and thermal conductivity of the inedium. Equations (1.7) and (1.8) can be simplified

by introducing the Riemann invariants,

,,(t, x) ',(t, X) a(t,x) ?,(t, X)
(1.9) r(lx) s(x) -

-- 1 2 -1 '

to give

(1.10) r(t,,x) + (a(t, x) + ,,(/, x)) ?-(t,x) - .20,. (  -

and

a 0 ,5 2
(1.11) -. s(t, X) - (a(t, ) - V(/ -)) e) a' ) s1 - X) - r(t, a)).

Consider the propagation of a disturbance into an initially undisturbed region, s = so

where so = - Then the problem is governed by equation (1.10). But from equation (1.9),

(1.12) a(t, x) + v(t, x) + 2 r(t, x) + 3
2

thus equation (1.10) becomes

a _+1 +-3 a 6 02
(1.13) -,(t, x) + ( r(t,. x) + so) -r(t, .) - - ',(t, X).

at2 2 517' 20.1.2(a)

As the final step we introduce the change of variables

(1.14) z(t,.x) - - I (r(+ 1,) - ro), x - 001
2

to give Burgers' equation

(1.15) a (tO + (t,, - ,2

From equations (1.12) and (1.14) we have z(t,{) {a(t,) ,,(+,g)} - { c) + ao}, where

10 = 0, i.e., u(t, €) is the excess wavelet velocity (the difference kclween propagation speeds

of disturbance in stagnation and rionstagnation conditions). The coordinate is measured

relative to a frame of reference moving with the undisturbed speed of sound ao.
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2. Well-posedness and stability of Burgers' equation

In this section, we consider well-posedness and stability properties of the solution for

Burgers' equation with Dirichlet boundary condition. These results will be needed in the

analyses of our control problems in the next section. We first consider an abstract version

of this problem and then specialize to Burgers' equation.

Consider an initial value problem

dt
(2.1) dz(t) = Az(t) + f(t, z(t)), Z(to) =zo, (t > to),

on a Ililbert space X, where A is the infinitesimal generator of an analytic semigroup S(t)

satisfying I[S(t)c(x) < Me ' t, t > t o, for some constants A = A(') > 1 and w > 0. Since

S(t) is analytic, the fractional powers of A 1 = -A + al are well-defined for any a > w [27,

Chapters 1,2]. Since 0 - p(Al), the resolvent of A,, A' is invertible for all 0 < y < 1.

Therefore, the graph norm izil + IIA'zII on the domain D(A') of A' is equivalent to the

norm IzIII = IIA 'zI. We denote the 1lilbert space D(A') with the norm i]zil + IIA'zII or

IIA 'zII by (X.,l II 11,).
We shall make the following assumption [17,27].

Hypothesis (F): Let U be an open subset of [to, oo) x X. The function f : U -- X

satisfies the hypothesis (F) if for every (t,z) E U there is a neighborhood V C U and

constants L > 0, 0 0 < 1 such that

(2.2) If(tI,zl) - f(t2, z2 11x _ L(It, - €1' + I - Z211,)

for all (ti, zi) E V, i = 1,2, i.e., f is locally tl1der continuous in t, locally Lipschitzian in z,

on IU.

Now we are ready to state the local existence theorem for the solution of equation (2.1).

The following result appears as Theoren 3.3.3 in [17].

Theorem 2.1. Let A be as before and f satisfy hypothesis (F). Then for any ( t o, z0 ) E

U C R+ x Xp, there exists T = T(t0 , z0 ) > 0 such that equation (2.1) has a unique (strong)

solution z(t) on [to, to + T) with initial value z(to) = Zo.

Now, consider Burgers' equation, with Dirichlet boundary condition, on a finite interval
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[0, t] given by

a a2  a
-z(t, x) = f-z(t,x) - z(t, x)-z(t,X), 0 < x < f, t > 0at aX2 ax

(2.3) z(t,0) = z(t,[) = 0

z(0,X) = zo(X),

where c = F > 0 and Re is the Reynolds number. In order to place the system (2.3) into

a semigroup framework let z(t)(.) = z(t,.), z0(.) = z(0,.) and H = L2(0, f). Define the

operator A, by

(2.4) A,$ = "

for all € C D(A,) = H 2(0, t) n H0(0, f). The system (2.3) can now be written as the initial

value problem

(2.5) d-z(t) = A, z(t) + f(t, z(t)), z(0) = zo, (t > 0),

on the space H, where f(t,z) = -zz' is defined on the space H0 (0,j). It is well-known

[17,27,34] that A, generates an analytic semigroup S(t) on H.

We summarize the basic properties of the infinitesimal generator A, and its semigroup

S(t), t > 0, in the following remark.

Remark 2.2. (i) The spectrum o(A,) of A, consists of all eigenvalues An = -fn2 .2/f2,

n = 1,2, and for each eigenvalue A,, the corresponding eigenfunction On is given by

(2.6) 0,(x) = V2 sin -rX, 0 < x <.

(ii) The operator A, is self-adjoint, i.e., A, = A,, and the semigroup S(t) can be repre-

sented by the following formula
Co

(2.7) S(t)z = _ < z, On > On

n=1

for all z E H, where On's are defined by equation (2.6). Moreover, from equation (2.7), it is

easy to see that S(t) has the stability property

(2.8) IS(t) ,( ) < _e- , ,, t >__ 0.



A simple application of Schwartz inequality gives the following first Poincar6 inequality

[36, p. 116].

Lemma 2.3. For any z E H(0,f),

(2.9) IIZllH _ QH'IH,

where H = L2(0, t).

Remark 2.4. (i) The above lemma gives an equivalent norm IIZjtH _ 11z'11L2 on the space

H (O,t).

(ii) It is well-known that D((-A,) )= H (0,e) [17, p. 291,[21, p. 326].

Lemma 2.5. For any z E HO(0,t) = D((-A,)1), the following inequalities hold.

(2.10) JIS(t)ZllHo < e-l IzIIHo, (t >_ 0)

(2.11) IIS(t)zIIn ol 1 + f 1 7r(1 + f)

where -y = cir2/J 2.

Proof: For any z E II (0,), we know that (-A,)'S(t)z = S(t)(-A,)"z. Hence, by

Remark 2.2,

IIS(t)zH = IIS(t)zllL2 + II(-A¢)S(t)ZIL 2 < IIS(t)I ( lilzil + I[(-A,) z[[) < - IezIIH .

The inequality (2.11) follows from Remark 2.2, Lemma 2.3 and the estimate
00

JIS(t)zllHo < (I + f) jj(-A,)1 S(t)ZjjH =(1 + f) ll(-A,) e" < Z, 0. > On I1

n=I
00

=(1 + ) ie,_t < z, > V/cos rXii
n=l

< (1 + e)(sup{ Ine("+)t n = 1,2,... ) Iz IH

and

sup e+ '= 1,2,...} (A{ +Y, 07 2-

S2r
2  

I

where An,, = -cn 27r2/J 2 and On(x) = vfsin "'-x, n 1,2,.-..
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Remark 2.6. The inequality (2.11) holds for every z E H = L2(0, t), since the semigroup

S(t) is analytic.

Now we have the well-posedness and stability properties of Burgers' equation (2.3) on

the space HI(O,I). The following theorem follows from an application of Theorem 5.1.1 in

[171.
Theorem 2.7. For any given /3 > 0, 0 < 3 < " It

2/[ 2, there is a p = p([, c, 3) > 0

such that for any initial data zo E HI(O,e), with 1Z]oIn I< , there is a unique solution

z(t) = z(t,0;zo) E I0(0, f) of equation (2.3). Moreover, the solution satisfies the inequality

(2.12) I1z(t, 0; zo)IIH. < 2e-3tIzoIljo (t > 0)

and p = p(i, c,3) > 0 can be chosen to satisfy

(2.13) 0 < P <ey3)
Tr( 1 + e) (tv + 12 -x"

Proof: Note that 0 is an equilibrium point for the system (2.5). Since D((-A)) =H I

if the nonlinear term f(z) = -zz' satisfies the hypothesis (F) with index yt = , then, by

Theorem 2.1, we have a unique local solution z(t,0; zo) on the space HO. It is easy to see

that If(zI) - f(z2)11L2 < (JIzII IJ + IHz2IIH1) lz1 - Z21H.i for all z 1 ,z 2 C H0, uniformly in

t > 0. Hence. f satisfies the hypothesis (F).

For the global existence and uniqueness of the solution z(t, 0; zo) E Ho, let zo be any

initial data in Hol with IZoII, < j , where p = p(ec,/3) satisfies the condition (2.13). It

follows that

(2.14) P{-- ( ) d+ (I +±e)r I 1

sinc~1e €- - ) d- a'--1 -__whee_1

since - -- Td -v, where F is the Galnma function and F(l)

V/-. Let IJzoIIj,u < . Then, by the local existence property, there is a unique solution

z(t,O;zo) E II' satisfying the inequality Hlz(t,0; Zo)HIoi < p on an interval [0,t 1 ) for some

t1 > 0, where tj is chosen as large as possible. We will show that tl must be infinity. Suppose

that tj is finite. Then we must have IIz(t )IH1 > p. Note that, on the interval [0,ti),

(2.15) jjf(z(0))llL1 = 11 - Z(M)Z'(0 0 < (11:(t)lIII)2 < p2,



where ' = Lemma 2.5, Remark 2.6 together with inequalities (2.14). (2.15) yield

~ti
ffz(ti)jjji, IIS(ti)Zo + ] S(t - s)f(z(s))ds jjj

< HSYt. 1)f _ ± + I JS(t1 - s)f(z(,s))Ij,, ds

< tljZo11 +p 1{ + 1 + 2 ++(1+) t-s

<-+p2 {+ I d,; (I + -r e T ds

SI, + e 7r (+ e)7r p p
- +PIP-+) < -+ P"

This is a contradiction. Therefore, the unique global solution z(t, 0; zo) exists. Moreover,

from the above estimate, we know that if Iz1!11 < then Ilz(t,O;zo)Illij < p for all

t E [0,o0).

Finally, we will derive the stability result (2.12). Let w(t) = sup{ IZ(s)IjojiCe3S 0 <

s < t }. We then have

Iz(t)l 110C 13t < C' ( IIS(t)zol lii + f I S(t - s)f(Z(.)),i dS

C (- illollw + { 1 + 0 1 (1 ) d

t 10+ 1 (1+ f0

-
0  1 I +e P ( I _(_)(t_ )ds)w(t) + (I + )r c_('_O) ds

0 Vc1± 0 1t-

< Hzoiii. + p{ I -Y-O +(I ±s) + w() < HII,11. +

Therefore, w(t) < 211zoIIo and II(t)Lrj < 2- tI1zoI.,ji.

Remark 2.8. Rankin [29] considered well-poedness properties for a certain type of semi-

linear evolution equations where the nonlinear terms are in divergence form. According to

his results, we can see that equation (2.3) has a, unique (strong) solution for initial data in

L'(0, e), p > 4. To get this result, he used the analyticity of the semigroup S(t) and the fact
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that the differential operator - on H.(O, f) can be represented by
dx

(2.16) v d (-A,)1 B

for some bounded operator B E 1(H), where H = L2(0, f). In general, it is not true that

V -- = (-A,)2. This result could be used to analyze the stability property of the solution

of Burgers' equation with initial data in LP(O, f). p 4.

3. Linear control problem

As we noted in Section 2, the open-loop (no control) solution of Burgers' equation (2.3)

decays exponentially in the topology of the energy space H0d(0,) (see Theorem 2.7). How-

ever, the decay rate depends on the viscosity c > 0. We now explore the possibility of

obtaining an exponential decay rate independent of viscosity by feedback laws.

The basic model is governed by an abstract system of the form

d(3.1) -jz(t) Az(t) + Bu(t), z(O) = zo E H,

y(t) = Cz(t), t > 0,

where H, U and Y are Hilbert spaces, u(.) E L2(0, oc; U), y(-) E L"(0, oc; Y), and A is the

infinitesimal generator of an analytic semigroup S(t) on a Hilbert space II. Assume that

B c £(U, H), C E £(H, Y) and A is self-adjoint with compact resolvent. Solutions of (3.1)

are taken to be in mild form, i.e.,

ft

(3.2) Z(t) = S(t)z,, + S(t - s)Bu(s) ds,

(3.3) y(W = CS(t)zo + C S(t - s)Bu(s) ds, t > 0.

We first consider the performance index

(2 4) J(u) = { Ily(I)I'll + RIlu(t)l , } dt,

where y(t) is given by equation (3.3), and R > 0. The linear quadratic regulatcr problem is

(LQR) : Find u(.) C L2 (0, cx: U) minimizing the cost functional J given by equation

10



(3.4) subject to the system (3.2)-(3.3).

For the existence of an admissible control u such that J(u) < oc and for the exponential

stability of the closed-loop system we need the following two hypotheses.

(H1). The system (3.1) is stabilizable in the sense that there is a feedback operator

K E C(H, U) such that the closed loop semigroup SK(t) E C(11) given by

(3.5) SK(t)z = S(t)z + S(t - s)BKS,(s)zds

for all t > 0 and z E H decays exponentially.

(112). The system (3.1) is detcctable in the sense that there exists an operator F E

1(Y, H) such that the output injection semigroup SF(t) E C(H) given by

(3.6) SF(t)z = S(t)z + jSF(t - s)FCS(s)z ds

for all t > 0 and z E H decays exponentially.

Remark 3.1.[28, pp. 134-135] (i) If (111) is satisfied, then for any z0 E H, there is an

admissible control uzo(.) E L'(0, oo; U) such that J(u,0 ) < 00.

(ii) Let (112) be satisfied. Then for any z0 E H and u(-) E L2 (0, oc; U) with J(u) < 00,

z(t) defined by equation (3.2) is in L2 (0, c; H).

Now we state the following fundamental results for (LQR) problem, see [4,13].

Theorem 3.2. Let hypotheses (HI) and (112) be satisfied. Then there is a unique optimal

control u(.) C L2 (0, o; U) for the linear quadratic regulator (LQR) problem and u-(-) is given

by the feedback law

(3.7) u(t) = -R- 1 B*1I :z(t), t > 0

where z(t) is the corresponding optimal trajectory and H E L(11) is the unique nonnegative

self-adjoint solution of the algebraic Riccati equation

(3.8) A*H z + HA z - IBR?-IB*r z + C*C z = 0

for every z E D(A). Moreover, the closed-loop semigroup S11(t) E C(11) generated by the

operator A - BR - 'Bfl decays exponentially.

11



Remark 3.3. The algebraic liccati equation (3.8) can be defined for all z E fl, since the

right hand side of equation

(3.9) IIAz = -A*II z + HB1< B *  z - C'C z

is well-defined for all z E II, D(A) is densely embedded in II, and hence we can extend the

left hand side of equation (3.9) to z e I! continuously.

We now consider the control problem, and its linearization, for Burgers' equation. Define

the operator AE, as in Section 2, by AO = co" for all 0 C D(A,) = 112 (0,) n III(oj). For

the control input operator B and the observation output operator C we consider the Ililbert

spaces tH = L2 (0, (), U = R and Y = Rk. Assume that B E L(U. II) and C E C(II, Y) are

defined by

(3.10) Bit =u b(.)u and Cz ( ,

where b(.) E H, u E U, and i E (0, t), 1 < i < k, are defined by

(3.11) }(ii) = z(x) dx.

In equation (3.11), 6 > 0 is chosen so that (xi - 6 ,xi + 6) C (0, C) for all I < i < k.

Consider the following line&1 control problem.

(LQR), : Find u(.) L2 (0, oo; U) ,inimizing the weighted performancc in dcx

(3.12) J(u) f { 111(t)112: + R IluI(t) 2,}€2 t dt, (a > 0)

subject to the governing equations
d

(3.13) d z(t) = A~z(t) + Bu(t), z(0) zo

(3.14) y(t) = Cz(t), t > 0,

where Af, B, C arc as above and I? > 0.

Remark 3.4. (i) Equation (3.13) corresponds to the system

o 02
z-(t, x) c yz(t,.) + b(x)n(t), t > 0, 0 < .x <

(3.15) v(t,0) v(t,C) 0,

v,(0,X) ?,'o(X) •

12



(ii) For each i, 1 < i < k, .(xi) given by equation (3.11) represents an average value of

z(x) over a small neighborhood of -i. We can regard each i, 1 < i < k, as the location of

a "weight".

(iii) The weight function 00c"t in the definition (3.12) of the cost functional J will play an

important role in the exponential decay rate, see Theorems 3.9 and 3.10. However, it also

gives rise to the question of existence of an admissible control u(-) such that J(u) < 0.

For the control problem (LQR),, we introduce an "a-shifted " control system [15]. Let

(t) = z(t)ect, ii(t) = u(t)eai and '(t) = y(t)eat. We then have a modified linear control

problem

(LQR)l : Find iUi E L2(0, oo; U) minimizing the cost functional

(3.16) j(fi) { II1(t)12 + R il (t)l12, } dt

subject to

d
(3.17) dz(t) (A, + aI) (t) + Bii(t), (0) = zo,

(t) =CZ^(t), t > 0.

The solutions for the system (3.17) again are taken as mild solutions. If we solve the

problem (LQR)- and apply

(3.18) iia(t) =e - U(t) (t > 0)

to the original control system (3.13)-(3.14), then the resulting optimal trajectory ;;,(t) will

satisfy the inequality

(3.19) II z'o(t)I -- M e-fllzoI111,

where M > 1 is a constant and a > 0 is the desired degree of stability.

Remark 3.5. A discussion of the "a-shifted" problem for finite dimensional systems first

appeared in [1]. Anderson and Moore showed that, for finite dimensional systems, the control

problem (LQR), is "equivalent" to (LQR) a in the following senses :

(i) The minimum value of J defined by equation (3.12) is the same as the minimum value

of J given by equation (3.16).
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(ii) If U(t) = g( (t)) is the optimal control for (LQR)a for some function g, then i(t) =

is the optimal control for (LQR)L, and corivrsely.

We now apply Theorem 3.2 to the problem (LQtxi' in order to obtain an optimal control

ft E L2 (0, oo; U) for (LQR).

Remark 3.6. (i) From Remark 2.2, the spectrum o(A, + a] of the infinitesimal generator

A,+aI consists of all eigenvalues A,, n = 1, 2,..-, given by A,,, a-c-n 2r2/L'2 and for each

n, n = 1,2,..., the eigenfunction O,, corresponding to A,,n is given v ' 0,,(x) = v2 sin fx.

(ii) We are interested in the stabilization problem for the systei. (3.15) with small

viscosity c > 0, i.e., high Reynolds number. Let a0  If a > au. i hen there is at

least one positive eigenvalue A, = a - -. Moreover, if a > a0 and 0 < c, then the

first eigenvalue a - - of A, + aI satisfies ae - > a - -- > 0 and hence A, -- AI will

have at least one positive eigenvalue for all 0 < c- . This will become important \%hen

we apply feedback laws computed from low Reynolds number to investigate the closed-loop

response of the nonlinear Burgers' equation for high Reynolds numbers (see Example 3 in

Section 4).

Let a > a0 = - be given and let

(3.20) n.=max {nEN:A,,, =ca- n2 >0}.

Since A, is self-adjoint (see Remark 2.2) and the set { 0,,n : n 1,2,-.. } is a basis for

H - L2(0, e), we can identify z E H with the sequence {< z,O,,n > }fEN. Assume that

b, E U and cn E Y satisfy

(3.21) Bu { bn, u >}nEN and Cz = Lcn < z, or,,n >
n=1

with E,= Ib b < oC and E', IIcl < oo, see [28, pp. 137-143].

The following lemma is an application of stabilizability and detectability results of

Pritchard and Salamon [28, Section 4.21.

Lemma 3.7. For each n = 1,2,--. ,n,, let

(3.22) X,n= { i= 1,2,- n - 1}

n
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Then the following statements hold.

(a) b, = < b(.),0., > $ 0 for all n = 1,2,-- ,n,, if and only if the system (3.17) is

stabilizable in H.

(b) If 6> 0 satisfies 6 < then for each n = 1,2,... n,, there exists at least one(b)If 5 0 atifis ( <2n7

x, 1 < i < k, such that xi X0 ,n if and only if the system (3.17) is detectable through

Cc C(H, Y).

Proof: (a) From Remark 3.6, we know that the spectrum o(A, + ci) of A, + aI consists

of all eigenvalues A.,n = a - cn2 7r2 /f 2 . Thus, for all n, n > n, + 1, we know that A ,, < 0.

Let H,, be the linear span of eigenfunctions 0o,1,"". , ¢On . Then the dimension of H, is n'

and hence the system (3.17) is stabilizable if and only if the projection of (3.17) onto H' is

controllable, or equivalently, if and only if b, =< b(.), ¢O,n >$ 0 for all n, n = 1,2,. • , nc.

For (b), let cn = (C, " ,Cnk), n = 1,2,-. be defined by equation (3.21). Then we

have

(3.23) c, i = n r sin f sin f

for 1 < i < k. By the dual statements of (a), the system (3.17) is detectable through

C E C(H, Y) if and only if c, :$ 0 for all n = 1,2,... , nc. Hence, (b) holds.

Remark 3.8. If n, = 1, then X,l is the empty set.

We now return to the original control problem (LQR),. The following theorem is the

main result for our control problem (LQR),.

Theorem 3.9. Let a > a0 be given. Suppose that b(.) E H = L'(0, f), 6 > 0, i, 1 < i <

k, satisfy the conditions (a) and (b) of Lemma 3.7. Then there is a unique optimal control

u,,,(') E L2(0, oo; R) for the problem (LQR), such that

(3.21) it,,(t) = -R-'B*li,, z,,(t), t > 0

where z,,(t) is the corresponding optimal trajectory and I1,, E C(H) is the unique non-

negative self-adjoint operator satisfying the algebraic Riccati equation

(3.25) (A, + aI)*Hn,,z + ol,,,,(A, + aI)z - fI,,BR-BI1,,,z + C*Cz = 0

for every z E D(A,) = H 2(O,.) n H1(0, f). Moreover, the closed loop semigroup Sn0 ,(t) C

1(II) satisfies the following stability property

(3.26) 11 Sn ,, (t) IHc() < Me-(O+) t
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for some constants At = Al((t,() > 1 and w = co(a, ) > 0.

Proof: By Lemma 3.7, we know that the a-shifted control system (3.17) satisfies all

hypotheses (Ill) and (112) (with z(t), y(t), u(t), A, S(t) and J replaced by (1), j(I), &(t),

A,+ aI, S(t) and J, respectively ). Hence, by Theorem 3.2, there is a unique optimal control

fl(t) for (LQR)^ and the corresponding closed-loop senigroup S(t) decays exponentially, i.e.,

(3.27) 11 S (t)IIa, _ Mfe -" t > 0

for some constants Af = M/(a, () > 1 and w = w(a, e) > 0. Moreover, I(t) is given by

(3.28) f(t) = -R-'B*o,(t)

where _.(t) is the resulting optimal trajectory for the a-shifted system (3.17) and -I,( is

the unique nonnegative self-adjoint solution of equation (3.25). Since the semigroup S(t) is

generated by A,+oI-BR-BHI,, the infiaitesimal generator of the closed-loop semigroup

Sn,(t) for the original system (3.13) is A, - BR-'BFl,,. Hence, Sn,.,(t) = S(t)c - and,

by the relation (3.27), Sna,,(t) satisfies the inequality (3.26) with M = 1f). Moreover, the

optimal control i,,(t) for (LQR), is given by the formula (3.24), since fi, (t) = Ii(t)e - °t =

-R-lB*J,,5-t~e = -BJJ 0 ,,,,,,(1), where _ ,,(t) = i(l)e - t is the corresponding

optimal trajectory for the original system (3.13). This completes the proof.

The optimal control t,,,(.) E L2 (0, oc;R) obtained in Theorem 3.9 is given by the

feedback law (3.24). Note that f,,() depends on a and e. Define the feedback operator

hK,, C £(H, U) by

(3.29) K, =-R 1 BHfI,,,.

Then the optimal control i,,(t), t > 0, is given by

(3.30) ft,(t) = Ka,, z,(t)

and the infinitesimal generator for the closed-loop semigroup SH1 .,(t) is

(3.31) A, + BK,, = A, - BR-B=H,.

Recall that H = L2(0,f) and U = R. Thus, by Riesz representation theorem (see, e.g.,

[11, p. 13]), there is a unique feedback gain function k,,(.) C L'(0, ) such that

(3.32) Ka, z = n k,,(s)z(s) ds
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for all z e L 2(0,f).

We now have the following main result of this section.

Theorem 3.10. Let a > a0 be given. Suppose that b(.) E II = L 2(0,), > 0 and

x,, I < i < k, satisfy the conditions (a) and (b) of Lemma 3.7. Let k,,,(.) E II be the

linear feedback gain function defined by the formula (3.32). Then there exist constants

p = p(a, ) > 0 and M = Ml(a, c) > I such that for any initial data z0(E) H0(0, [), with

Ijzoll~< P , the controlled Burgers' equation

a d2 af
-Z(IX C z(t,r) - Z(t,x)-z(t, r) + b~) k,(s) -(t, s) ds

(3.33) ,(t,,) =(t f) 0,

z(O,x) zo(x) E I'(O,)

has a unique (strong) solution and the solution z(t)(.) = z(t, .) satisfies the following stability

property

(3.34) II z(t) 111p < 2M e-C IIjo(')l!0,-

Proof: Let the operators A,, B, C and A",, be given by equations (2.4), (3.10) and

(3.29). Define the nonlinear function f II0(0, e) -* L2(0,) by

(3.35) f (z) B K, Z --'

where - d Then, the map f satisfies the hypothesis (F) in Section 2, since for any

zI, Z2 I(O,f),

(3.36) II f(z ) - f(z 2) IIL(,,) < (I1BK.,,jIc(u) + IIzI 11W I1Z211.0 ) 11i - Z2I111.-

Note that the operator BK,., is bounded on the state space 1 = L2(0, f). Thus, by Theorem

2.1, we have a unique local (strong) solution of equation (3.33).

LetL SK.,(t), t > 0, be the analytic semigroup on 11 generated by the operator A, +

BK,,,. Then, by Theorem 3.9, SK,,,(t) satisfies the inequality

(3.37) II,K,.(1) Z11,, A- _ C-(O+w)I lI1l11.

17



for all z E H and for some constants A = M(,ac) 1 and w = w(a,c) > 0. Let

a < 0 < a + w. Then, there is a constant l= M0 (a, c, I > 1 such that

(3.38) SK..,(t) ZIIH1 K Ala e- t IZIH4

(3.39) I S ,-(t) -M Z I f- IC 1

for all z E H'. Let A! = max{_MA, Aic. } and choose p > 0 with 0 < p < . Then it is

easy to see that
fl

(3.40) PA l d, -.

Thus, by arguments similar to those in the proof of Theorem 2.7 together with inequalities

(3.38)-(3.39) and the expression

(3.41) z(t) = SK.,(t)zo + j h S.,(t - s)g(z(s))ds,

the unique global solution z(t)(.) = z(t, .) for the controlled Burgers' equation (3.33) exists

and satisfies the inequality (3.34), where g(z(t))= -z(t)z'(t).

4. Approximation and numerical results

In Section 3, we considered a linear quadratic regulator problem (LQR), to obtain a

desired degree of stability for the solution of the closed-loop Burgers' equation. In this

section we consider an approximation scheme for (LQR), and give some numerical results.

We first introduce an abstract approximation scheme for the problem (LQR) based on

the results of Banks, Kunish [4] and Ito [19] and then apply the scheme to get the optimal

control u,,(-) E L 2(0, oo; R). Throughout this section, we assume that R = I, the identity

operator on the control space U, (-ee Section 3). For more approximation schemes for the

linear regulator problems, see [2,4,14] and references given there.

We formulate a sequence of approximate regulator problems and present a convergence

result for the corresponding Riccati operators. Throughout this section, we use superscript

N in the designation of subspaces, operators and matrices in the N-th approximating system

and control proDlem, like HN, AN, BN, etc. Hence the superscript N indicates the order of

approximation.
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Let HN , N = 1,2,. .. , be a sequence of finite dimensional linear subspaces of H and

pN : H -' HN be the canonical orthogonal projections. Assume that SN(t) is a sequence

of Co-semigroups on HN with infinitesimal generators AN E £(II). We then consider the

family of regulator problems:

(LQR)N : Ainimize JN(Zo, u) over u E L2 (O, cx; U) subject to the control system

(4.1) zN(t) = SN(t)N + SN(t - s)BN u(s) ds,

(4.2) yN(t) = cNzN(t),

where zN(O) = Zu  pN zo and

(4.3) JN(0oNu)= { YN(t)lI2 + I lu(t)II'} dt.

Remark 4.1. If, for each N, (AN, BN) is stabilizable and (AN, CN) is detectable, then,

by Theorem 3.2, there is a unique optimal control iN(t) for the finite dimensional problem

(LQR)N and it is given by

(4.4) ,U ()=-(BN)I FN (tz u

where SN(t) is the Co-semigroup on HN generated by AN - BN(BN)*rIN and 11N E L(HN)

is the unique nonnegative self-adjoint solution of

(4.5) (AN)*IHN + H-NAN - INBN(BN)*HIN + (CN)*CN = O.

For the finite dimensional approximation systems, it is not clear that (AN, BN) is sta-

bilizable even if the original system (A, B) is stabilizable. Similarly, it is not clear that

the detectability property of (A,C) is preserved under the finite dimensional projections.

Another question we have to consider is the convergence of approximates H-N and & N(t) to

the infinite dimensional solutions H and ui(t), respectively. For these reasons, we need the

following assumptions.

Let SN(t) = eANt, t > 0.

(Al): For each z E H, SN(t)pNz - S(t)z and SN(t)*pNz S(t)*z, where the

convergences are uniform in t on bounded subsets of [0, oo).

(A2): (i) For each u E U, BNu - Bu and for each z E II, (BN)*pNZ B*z.
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(ii) For each Z E II, c'VI)NZ -- Cz and for each y C Y, (CV)*y ) C*y.

(,43): (i) The family of systems (A, B N ) is uniformly slabilizable, i.e., there

exists a sequence of operators KN E L(IN, U) such that sup 1jj'N 1 < -cc and

i,(AN+1BNKN)tpNIc(JI) < M t-', t > 0,

for some positive constants M1 > I and w, > 0 which are independent of N.

(ii) The family of pairs (AN, CN) is uniformly detectable, i.e., there exists

a sequence of operators p'N C £(Y, fIN) such that sup IFNil < oc and

fle(AN+FNCN)tpN(j!((I) < A[2e - 12t, t > 0,

for some constants A12 > I and W2 > 0 which are independent of N.

Remark 4.2. (i) The condition (A3)(ii) is a relaxation of the coercivity assumption in [4]

(see also [19, p.3]).

(ii) Suppose that BN = pNB and CN = CPN. Then (A2) holds, since it follows from

(Al) that PNz -* z for all z C H.

By simple modification of results from [19, Theorem 2.1] and [4, Theorem 2.2], we have

the following fundamental convergence results.

Theorem 4.3. Let (A, B) be stabilizable and (A, C) be detectable. Suppose that (AI) -

(A3) are satisfied. Then, for each N, the finite dimensional algebraic Riccati Equation

(4.5) admits a uique nonnegative self-adjoint solution fIN such that sup{ I1-INII[(HN) : N

1,2,...} < oo and

(4.6) fIN pNz -- lIz

for every z E H. Moreover, there exist positive constants A13 _ 1 and w3 (independent of

N) such that

(4.7) 1l,(AN-BN(BN)-HtN)tPNIIC(If) _< M - , t > 0.

For the uniform stabilizability and detectability assumptions (A3) we introduce a sesquilin-

ear form a,(.,.) V x V -* C defined by

(4.8) a,(z, iw) J z'(x)6'(x)dx, z E V
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where V = tt0(0, 1). Note that, to allow the use of the theory of sectorial operators and

sesquilinear forms in discussing the spectra of various operators, we assume in defining a,(.,.)

that the functions in V are complex valued. It is easy to see that the sesquilinear form a,(.,-)

is V-coercive [36, p. 274], i.e.,

(4.9) [a,(z, w)I <_ c lIzillv Iwllv, (continuity)
(4.10) 7 ea,(z, z) + "yJ]zflJ 1 > c J[zlIJ', (Grding's inequality),

for all z,w E V and > e > 0. Furthermore, it follows from the bounds (4.9) and (4.10)

that there exists, in a unique manner, an operator A, E £(V, V*) such that

(4.11) a,(z,w) =< -A,z,w >v.,v and a,(z,w) =< -Aw,z >v.,v

for all z, w C V (see, e.g., [36, pp. 271-275]).

Turning next to specific approximations for (LQR),, we divide the unit interval [0,1] into

N + 1 equal subintervals to get [xi, xi+l], xi = I' I = 0,1,.. ,N. For each i, 1 < i< N,

let hUN(x) denote the linear spline basis function defined by

(N + 1)(x - xi_), x,_ < x < x,

(4.12) h ) -(N + 1)(x- xi+l), xi :5X xi+1

0, otherwise.

Let HN be the N-dimensional finite element space given by

N

(4.13) H N = {ZzihU(x) : zi c R, i = 1, 2  ,N}.

Then we have a sequence of finite dimensional (real) subspaces H N C V, n 1, 2,

Moreover, it is well-known [31],[19, p. 15] that the family of HN satisfies the following

approximation condition:

(APP) : For each z E V, there exists an element zN C HN such that

lIz- zNIIv < e(N), where c(N) -+ oc.

Let P : H - HN be the canonical orthogonal projection onto H N . Then, from the

approximation property (APP), it is a trivial matter to see that PNz -- z as N -- oc, for z E

H. For the finite demensional regulator problem (LQR )N we choose

(4.14) BN = pNB and CN = CPN.
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Then the conditions (A2)(i),(ii) follow from Remark 4.2.

To obtain a representation AN of A, on HN, consider the restriction of the sesquilinear

form a,(., .) to HN x HN. We then have a representation A N of A, satisfying

(4.15) a,(z,w) =< -ANZ, w > and a,(z,w) =<-(AN)*wZ >

for all z,w E H N . Equation (4.15) follows from the fact that HN is a real Hilbert space. We

know also that AN = (A N)*, since A, = A,.

Remark 4.4. Since HN C H, by equation (4.15), it is easy to see that for any A E a(A)

Re A < -y < -c.

Let SN(t) be the CO-semigroup generated by AN . Then the conditions (A1)(i),(ii) fol-

low from the results of Banks and Kunish [4, Lemma 3.2]. Note that SN(t) = (SN(t))*.

For the condition (A3)(i) we need a certain preservation of exponential stabilizability under

approximation ( (POES) in [4]). The following result is taken from [4, Lemma 3.3.

Theorem 4.5. Let (A,, B) be (exponentially) stabilizable. Suppose that the approximation

condition (APP) holds. Then the approximations defined through equations (4.14)-(4.15)

satisfy the condition (A3)(i), i.e., the family of pairs (A', BN) is uniformly stabilizable.

By the dual arguments of Theorem 4.5 we can see that the condition (A3) (ii) holds

under the assumption that (A, C) is detectable. We summarize our discussion up to this

point as the following theorem.

Theorem 4.6. Let (A, + aI, B) be stabilizable and (A, + aI, C) be detectable. Let A.,

BN, CN be defined as in equations (4.14) and (4.15). Then we have

(4.16) HINpNZ H liz, z E H,

and

(4.17) SN(t)pNz S(t)z, z E H,

where the convergence is uniform in t on bounded subsets of (0, oo), pN is the orthogonal

projection onto H , and I,-, satisfies

(4.18) (A N + IN)*flN, + Hn ,(AN + cIN) - INBN(BN)*N + (CN)CN = 0.
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Remark 4.7. Note that S(t) =S(t)e - , SN(t) = sN(t)e-at, where S(t), SN(t), S(t) and
N(t) are semigroups generated by A, AN , A, + aI and AN + aI N , respectively.

Next, consider the matrix representations of operators on the space HN. Let the ap-

proximate solution zN(t, x) of z(t, x) on HN be given by

N

(4.19) zN(t'x) ZzN(t)h N(x)
iN-1

for some zN(t) E R, i = 1,... ,N. Then, from equations (4.14) and (4.15), we have a finite

dimensional ODE system

[GN]d{zN(t)} = [AN]{zN(t)} + {BN}U(t),

(4.20) [G dt
where {zN(t)} = [zN(t),. .. ,zN(t)] T ,

[GN] = < h N,h N >]N×N

4 1 0 0 ... 0

1 4 1 0 ... 0
0 1 4 1 ... 0

(4.21)
6(N+1) .

0 1 4 1
0 ... 0 1 4 NxN

-2 1 0 0 ... 0
1 -2 1 0 ... 0
0 1 -2 1 ... 0

(4.22) [AlN ] = c( N  + 1) ". ". "-

0 1 -2 1
0 ... 0 1 -2 NxN

(4.23) {N}=[< b,h uN >, < b,huN >,..., < b, hN >IT,

where < b, hN >= f0o b(x)hUY(x)dx, 1 < j < N. Since [GNJ is invertible, by multiplying

[GN]- ' to both sides of (4.20), we get

(4.24) d{zN(t)} = [AN]{zN(t)} + {BNIu(t), {zN(0)} = {zN},

where

(4.25) [AN] = [GN]-[AN], {BN} = [GN]I-1{BN}
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and {zN} = [GN]-,[< z 0 , hN ,..,< zo, h N >11'.

Next, consider a representation CN of the operator C on HII. It is easy to see that

CN : H' --+ R' is given by

(4.26) [CN] = [hU(Xi)]kN,

where J) f+ hg(x)dx, 1 < i < k, 1 < j < N.

Finally, we have a finite dimensional Riccati equation (4.18) and the corresponding
-N

feedback gain operator K, given by

(4.27) INf= -(BN)I,.

Therfore, the closed loop system (4.24) can be represented by

(4.28) d{ZN(t)} = (A N + B N KN,){zN(t)}, {zN(o)} = {ZN}.

Now, we discuss an algorithm for finding the unique Lonnegative self-adjoint Riccati

solution for equation (4.18). We employ the Potter's method [30] to obtain -I
N . The first

step in Potter's method is to form 2N x 2N matrix

(4.29) mN (AN + CtIN)* (cN)*CN]

BN(BN)* -(A N + o N

Next, find all eigenvalues and eigenvectors of MN and form the matrix

(4.30) zN= [Q1 1

where the columns of ZN are the eigenvectors of AIN corresponding to the eigenvalues

with positive real part. When eigenvalues occur in complex conjugate pairs, so do the

eigenvectors. In this case, the real and imaginary part of the eigenvector each forms a

column of ZN. Finally, the solution to the Riccati equation (4.18) is given by the formu]a
-IN , = QN(QN)-.

Remark 4.8. From the numerical results we found that the Riccati solution operators 1-IN

blow up when the viscosity c > 0 goes to 0 for fixed a > 0. Also, when a goes to infinity

with c fixed the same phenomenon has been observed.
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Finally, the finite di[iensional approximiation for the cont rolled nonlinear Burgers' (qua-

tion (3.33) is given by

(4.3f}[,,.){s (t)} + Iz({z;(t)} ). {([;)} - {}.IV 3 t 1{: ( 01_(f g | + f , fx ( t ,+,V m 1
(Itf

where [A'], { B ' } are defined as in equation (4.25), and

f\(f{zx()}) - [(;-\]-ifN({z:(I)})

-1.(t)Z(t) + (Z2"(t))-(z i"(t))2 -( =i ( t))(- ,N (t)) + ( : "(j))(Z N: )'( ) + ( +:N 2t

6 NX_ (t ) (z:,_N )' (:-Nxt) +(Z ( ) - 2t))(ZN._,(l % :x-(1)( N:.( )
-(-N_,(t))2 - (::_,(t))(: ,())

where [G | is defined by equation (4.21). To solve the nonlinear ODE system (4.31) we use

the .l-th order Runge-Kutta method [33].

Throughout the rest of this section, we discuss how our results work for relaxation of

"steep" gradient of the solution for Burgers' equation through numerical experiments.

For numerical examples, the length t for space domain, the Reynolds nummber, Ile, the

initial function z0(-) E tf1(0, 1) and the control input function b(.) E L2 (0. 1) will be chosen

as 1, 60, sin wx and cx, respectively. Thus the governing equation is given by

3102 0 -)C Ik
b-z(t. r) - -2 z(t,x) - Z(t,x)-Z(t,.,.) + c k,.(s)z(t..s) d

(1.32) z(t,0) Z(t, 1) = 0

z(O, x) sin 7r.r,

where the feedback gain function k' ,.(.) C L2 (O, 1) will be deterinined by the desired degree

ot > 0 of stability and the action of output operator C.

The "robustness" of the feedback controller exhibited, for example, ;n Figure 2. will

be discussed in Example 3. For this particular example, Reynolds numbers 60, 80, 100 and

120 are ,'iosen.

Remark 4.9. (i) From the numerical experinents, we found that if Reynolds number,

Re, is less than 60, then the diffusion phenomena dominate convection phenomena. In this
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case, the formation of steep gradient due to convection term -z(t,x)- .z(t,x) of the open-

loop solution, i.e., k,,(.) - 0 in equation (4.32), is not clear. But, for Reynolds number

greater than 60, the open-loop solution creates "sharp" gradient in finite time, (see Figures

1, 10, 12 and 14). Of course, the solution dies out eventually, because of the diffusion term

; 5- z(t, X).

(ii) The control input function b(x) = ex is defined for all x C [0, 1]. Thus, the

feedback control acts on the whole domain [0,1]. But, one can choose any L2-function

b(.) E L2 (0, 1) satisfying the stabilizability condition in Lemma 3.7. In fact, b(x) = cx

satisfies the stabilizability condition for any desired degree of stability a > 0, since the

coefficients b,, n = 1,2,..., representing input function b(.) are not zero, i.e., b, <

b(.),sin 7rX >L2(0,1)= f0 csin rxdx $0 for all n = 1,2,.., (see Lemma 3.7).

(iii) The initial function zo(x) sin irx is chosen for our numerical experiments. Other

typical H0'-functions such as the "hat function" defined by

2x, x E[0, 1]
(4.33) Zo(X) = {- 2 + E [, 1]

can be used for initial data. But, we found that the solution of Burgers' equation (4.32) with

initial data Zo(x) replaced by the hat function has almost similar phenomena, such as the

creation or relaxation of steep gradients, as those of sloution with initial data zo(x) = sin 7rx.

To show trajectories of open-loop and closed-loop solutions, the order N of approximation

is chosen as N = 32 for both cases. And the corresponding trajectories from time t = 0.0 to

t = 1.0 will be shown. The convergence of the feedback gain functions k,,(.) C L2(0, 1) will

be shown for N = 8, 16, 32, 64 and 128.

Example 1. (Bounded Input/Output)

The observation operator C E C(L 2 (0, 1),R 3 ) for this example is given by

(4.341) C (z) = ( .(0.3), 7(0.5), :(0.75)),

where -(x) is the average value of z(.) E L2(0, 1) in a small neighborhood of x, z =

0.3, 0.5, 0.75, and defined by equation (3.11), i(x) = -I- z s) ds. Here, 6 >0 is chosen

so small that each open interval (± - 6, .t + 6) is contained in the whole domain (0, 1). The

desired degree a of stability are chosen 0.3 and 0.6 for Figures 3 and 5, respectively. For
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both cases, n,, = max{ n E N :a - -n 2
7

2 > 0 } = 1 and hence the set X. defined in

Lemma 3.7 is empty. Thus, all assumptions in Theorem 3.9 are satisfied.

The feedback gain functions k,.,(-) are given in Figures 2 and 4. From these plots, it is

easy to see that control action is concentrated on the location of sensors. This phenomenon

is natural, since the optimal control is obtained to minimize the cost functional J defined by

equation (3.16) whose first term IR(t)I (= l I^(ti)l, where xi = 0.3, 0.5

and 0.75 for i = 1,2 and 3, respectively. The corresponding closed-loop trajectories a1,2

shown in Figure 3 (for a = 0.3) and Figure 5 (for a = 0.6). From Figures 3 and 5, we can

see how the controllers contribute to stabilization of the steep gradient as well as the solution

itself.

Example 2. (Identity Output Operator)

For this example, we take the identity operator I on L2(0, 1) for the output operator C. In

this case, the ouput space Y is L2(0, 1). The convergence of gain functions and corresponding

closed-loop trajectories for a = 0.3 and 0.6 are shown in Figures 6-7 and 8-9, respectively.

Since the observation operator is identity, this example gives the information about the

maximal control action. We note the following observation concerning the convergence rate

of gain function. Theoretically, the rate is 0(1) [19, p. 15]. But, in this example, the rate

seems to be faster than 0(!), (see Figures 2 and 4). Another observation is concerned with

the location of maximal control action. The location moves to the left portion of domain as

the degree of stability a > 0 increases. In other words, we should put more action on the

front part of domain to get a higher exponential decay rate a > 0. (See also Figures 2 and

4).

Example 3. (Robustness)

In this example we show the robustness of the feedback controller showed in Figure 2.

The feedback controller is obtained from the control system with Re=60, a = 0.3, b(r) = .r

and the ouput operator C defined by equation (4.34).

Figures 2, 10, 12 and 14 show open-loop trajectories for Reynolds numbers 60, 80,

100 and 120, respectively. The corresponding closed-loop trajectories are shown in Figures

2, 11, 13 and 15, respectively. The order N of approximation is chosen as N = 32 for

Re=60, 80, 100 and N = 64 for Re=120. From these examples, it is easy to see that

the feedback controller obtained for Re=60 stabilizes the steep gradient of the solution for

27



Burgers' equation with various Reynolds numbers. However, we see that the sharp gradient

is relaxed slowly as Reynolds number increases, (see Figures 3, 11, 13 and 15). Note that,

fromn Theorem 3.10, the closed-loop solution z(t) of the nonlinear system (3.33) satisfies the

stability property

(4.35) II z(t) lwj <  21c- t [Iz0o()Iln .

Although the exponential decay rate ct is independent of Reynolds number, the constant

A = M(o, Re) depends strongly on the Reynolds number, Re.

5. Conclusion

In this paper, we considered a feedback control problem for a nonlinear equation, in

particular, Burgers' equation. The method consists of linearization of the nonlinear equation.

We used the linear quadratic regulator (LQR) problem to find optimal feedback gains. The

linearized equation is the heat equation. It was also proved that, under appropriate selection

of the input functions and "weights location", the LQR problem for the linearized problem is

detectable and stabilizable. We then analysed a "shifted quadratic cost" to construct gains

which produce a fixed decay rate. In particular, we showed that the closed-loop system

satisfies the inequality

II z(t,0; z0 ) IIH0 < M(W)c- t  0Ij,,

where a > 0 does not, depend on the Reynolds number, but AI() does, (see Theorem 3.10).

We also developed a numerical scheme for computing the feedback functional gains.

Several numerical experiments were performed and the following observations were made:

1) The functional gains depend strongly on the "weight location". For example, if the

output operator C is given by

C ( z ) = ( z ( .3 , 7-( 5 , 7 ) ,

then the gain function is concentrated on the weight location, 0.3, 0.5 and 0.75, (Figures 2

and 4).

2) The closed-loop nonlinear system is stabilized (as predicted) by linear feedback laws.

Moreover, the steep gradients (for c - 0) are smoothed out by feedback.

3) To test the "robustness" of the feedback control law, one experiment was performed.

We obtained the functional gain k,,(.) from the control system at the Reynolds number,
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Re=60, and applied it to the closed-loop system

(5-1) 0 a 0 t X 2 z tX) -Z (t, X) az (t,X) + k (s) -(t,s) ds(5.1) 1- 52 ax

at Re=80, 100 and 120. The closed-loop responses are shown in Figures 11, 13 aind 15.

Although the performance was decreased, the system (5.1) was still sl bilized and smoothed

out. These results provided some insight into the possibility of using iiiiear feedback laws

for nonlinear distributed parameter systems.
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